
Measurement of AMRINS Parallel Performance

P. Colella
D. F. Martin

N. D. Keen

Applied Numerical Algorithms Group

NERSC Division
Lawrence Berkeley National Laboratory

Berkeley, CA

January 20, 2005

The target platform for this benchmark measurement is a machine named Halem
located at GSFC. Halem is the NCCS Compaq AlphaServer SC45 System which consists
of 104 symmetric multiprocessor nodes (4 processors per node). Memory is shared within
a node.

The Fortran compiler used for this was the native Fortran compiler f77 with the -fast
optimization flag. The C++ compiler used was the GNU g++ compiler (version 3.3.1)
with flags -O2 -ftemplate-depth-27.

A sample input used for the runs (for the 64× 64× 96 case) is presented in Figure 1.
Table 1 shows the three sizes of benchmark problems used including the respective

vorticity tagging factor, while Table 2 shows the total number of points updated for each
run. In all of the benchmark runs, four timesteps are completed.

Problem size Vorticity Tagging
Factor

32x32x48 0.0050
64x64x96 0.0025
96x96x144 0.00167

128x128x192 0.00125

Table 1: Baseline Problem Data

Level 32x32x48 64x64x96 128x128x192
0 196608 1572864 12582912
1 1310720 5783552 23101440
2 38191104 212041728 1325907968

totals 39698432 219398144 1361592320

Table 2: Number of Points Updated Per AMR Level for each Problem Size

Changes were made to the code since the last performance improvement report. The
most relevant is a change in the way solver tolerances are implemented in the elliptic
solvers which results in better solver performance, while solving to the same accuracy.
Other changes include a new advection method which replaces a less accurate previous
one. This new advection method added significant source code as well increasing the
computational work required to solve the example problem. We also found a bug in the
TRANSVERSE CROSS fortran function. Several performance improvements were made.
Several of these performance improvements not only improved the scaling behaviour of
the code, but also decreased the overall wall-clock time of all runs.

The parallel performance of the AMRINS code is summarized in Table 3. As we double
the linear size of the problem, the computational size of the problem increases by a factor
of 8 in 3-dimensions. So, we can compute scaled efficiency by comparing the run time

1

main.max_step = 4

main.max_time = 200.0

main.num_cells = 64 64 96

main.max_level = 2

main.ref_ratio = 4 4 4

main.regrid_interval = 4 4

main.block_factor = 8

main.max_grid_size = 48

main.max_base_grid_size = 32

main.fill_ratio = 0.8

main.grid_buffer_size = 1

main.is_periodic = 0 0 1

main.cfl = 0.5

main.checkpoint_interval = -1

main.plot_interval = -1

main.plotPrefix = pltNew.

main.verbosity = 2 # higher number means more verbose

ns.vorticity_tagging_factor = 0.0025

ns.init_shrink = 1.0

ns.tag_vorticity = 1

ns.project_initial_vel = 1

ns.init_pressures = 1

ns.num_init_passes = 1

ns.tags_grow = 1

ns.specifyInitialGrids = 0

ns.initVelFromVorticity = 1

ns.backgroundVelocity = 0.0

ns.viscosity = 0.000001

ns.num_scalars = 1

ns.scal_diffusion_coeffs = 0.00 0.0

ns.viscous_num_smooth_up = 1 #multigrid solver parameter

ns.viscous_num_smooth_down = 1 #multigrid solver parameter

projection.doSyncProjection = 1

projection.applyFreestreamCorrection = 0

projection.eta = 0.9

projection.numSmoothUp = 3 # multigrid solver parameter

projection.numSmoothDown = 3 # multigrid solver parameter

0 = solidWall, 1=inflow, 2=outflow, 3=symmetry, 4=noShear

physBC.lo = 4 4 4 # physical BC info (overridden if periodic)

physBC.hi = 4 4 4 # physical BC info (overridden if periodic)

physBC.maxInflowVel = 1.0

Figure 1: Input file for 64 × 64 × 96 case

2

between two runs which differ by a factor of 2 in base grid size, and a factor of 8 in
number of processors. These are shown in Table 4. As can be seen, the scaled efficiencies
range from 0.75 (75%) to 1.13. Cases where the efficiencies are greater than 1 indicate
additional efficiencies which come about through AMR, along with the variablilty of the
different grid hierarchies generated in each case.

Prob size Num Avg Memory Min-Max mem AMR Run
Procs MB MB secs

32x32x48 1 433 433-433 2837
32x32x48 2 240 239-242 1459
32x32x48 4 143 136-148 823
32x32x48 8 91 80-105 449
32x32x48 16 61 48-78 286
32x32x48 32 43 13-68 221
64x64x96 8 354 327-384 2605
64x64x96 16 209 180-230 1413
64x64x96 32 126 106-166 853
64x64x96 64 85 37-151 597

128x128x192 64 312 256-365 2632
128x128x192 128 197 158-268 1698

Table 3: Current parallel performance of AMRINS code for baseline vortex-ring problem

Base Problem Num Large Problem Large num Scaled
Size Procs Size processors Efficiency

32x32x48 1 64x64x96 8 1.13
2 16 1.03
4 32 0.96
8 64 0.75

32x32x48 1 128x128x192 64 1.07
2 128 0.86

64x64x96 8 128x128x192 64 0.99
16 128 0.83

Table 4: Scaled Efficiencies computed from Table 3

3

